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Abstract. The structure of transition amplitudes in field theory in a three-dimensional space whose spatial
coordinates are noncommutative and satisfy the SU(2) Lie algebra commutation relations is examined. In
particular, the basic notions for constructing the observables of the theory as well as subtleties related to the
proper treatment of δ distributions (corresponding to conservation laws) are introduced. Explicit examples
are given for scalar field theory amplitudes in the lowest order of perturbation.

1 Introduction

Recently much attention has been paid to the formulation
and study of field theories on noncommutative spaces. The
motivation is partly the natural appearance of noncommu-
tative spaces in some areas of physics, a recent one occur-
ring in string theory. In particular, it has become clear that
the longitudinal directions of D-branes in the presence of
a constant B-field background appear to be noncommuta-
tive, as seen by the ends of open strings [1–4]. In this case
the coordinates satisfy the canonical relation

[x̂a, x̂b] = iθab1 , (1)

in which θ is an antisymmetric constant tensor and 1 rep-
resents the unit operator. Although due to the presence
of the background field, it might seem as if a Poincaré
invariant interpretation of field theories on canonical non-
commutative spaces is not possible, it has been shown that
a twisted version of Poincaré symmetry can be introduced
as the alternative symmetry of field theories on canonical
spaces [5, 6]. The theoretical and phenomenological impli-
cations of possible noncommutative coordinates have ex-
tensively been studied [7, 8].
One direction to extend studies on noncommutative

spaces is to consider spaces for which the commutators of
the coordinates are not constants. Examples of this kind
are the cases with a q-deformed plane and a noncommuta-
tive cylinder (S1×R) [9, 10]. It is shown that, while the ul-
traviolet (UV) behavior of the theory in a q-deformed case
is worse than an ordinary plane, the theory on a noncom-
mutative cylinder, contrary to its commutative version, ap-
pears to be UV-finite [9, 10]. Another example of this kind
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is the so called κ-Poincaré algebra, in which noncommu-
tativity is introduced between spatial directions and time,
that is [11–13]

[

x̂a,̂t
]

=
i

κ
x̂a ,

[x̂a, x̂b] = 0 , (2)

where κ is a constant. The formulation of quantum field
theories on this kind of spaces has been studied in [14–18].
In the noncommutative cylinder and κ-Poincaré cases

mentioned above the noncommutativity is involved by the
time direction. Other interesting examples are the models
in which the (dimensionless) spatial position operators sat-
isfy the commutation relations of a Lie algebra [19, 20]:

[x̂a, x̂b] = f
c
abx̂c , (3)

where the f cab are the structure constants of a Lie algebra.
One example of this kind is the algebra SO(3), or SU(2).
A special case of this is the so called fuzzy sphere [21–24],
where an irreducible representation of the position opera-
tors is used that makes the Casimir operator of the algebra,
(x̂1)

2+(x̂2)
2+(x̂3)

2, a multiple of the identity operator
(a constant, hence the name sphere). One can consider
the square root of this Casimir operator as the radius of
the fuzzy sphere. This is, however, a noncommutative ver-
sion of a two-dimensional space (sphere). Different aspects
of field theories on the fuzzy sphere, including the fate of
the UV-divergences of Euclidean theory, the structure of
UV/IR mixing, as well as topologically nontrivial field con-
figurations have already been examined [25–27].
In a previous work [28] a model was introduced in which

the representation was not restricted to an irreducible
one; instead the whole group was employed. In particu-
lar, the regular representation of the group, which contains
all representations, was considered. As a consequence in
such models one is dealing with the whole space, rather
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than a two-dimensional sub-space as in the case of a fuzzy
sphere. The space of the correspondingmomenta is an ordi-
nary (commutative) space and is compact if and only if the
group is compact. In fact, one can consider the momenta
as the coordinates of the group. So a by-product of such
a model would be the elimination of any UV-divergence in
any field theory constructed on such a space. One import-
ant implication of the elimination of the UV-divergences,
as we shall see in more detail later, would be that there will
not remain place for the so called UV/IR mixing effect [29],
which is known as a common phenomenon one expects to
be going to face in models with canonical noncommutativ-
ity, the algebra (1). In [28] the basic ingredients for calculus
on a linear fuzzy space, together with basic notions for
a field theory on such a space, including Lagrangian and
elements for a perturbation theory, were introduced. The
models based on the regular representations of SU(2) and
SO(3) were treated in more detail, giving the explicit form
of the tools and notions introduced in their general form.
In the present work the aim is to examine the structure

of the amplitudes coming from a field theory based on a
space with SU(2) fuzziness. In particular, we introduce the
basic elements by which one can compute the matrix elem-
ents corresponding to the transition between initial and
final states. The contribution entailed in a perturbative ex-
pansion of the amplitudes are presented in the lowest order
(tree level) for a self-interacting scalar field theory.
The scheme of this paper is the following. In Sect. 2,

a brief review is given of the calculus and field theory on
noncommutative spaces of the Lie algebra type, so that the
present paper is self-contained. In Sect. 3 the basic elem-
ents of transition matrix elements are introduced and dis-
cussed. Explicit examples are presented to show how these
things work. Section 4 is devoted to our conclusion.

2 Basic notions

2.1 Calculational tools

For a compact group G, there is a unique measure dU (up
to a multiplicative constant) with the invariance properties

d(V U) = dU ,

d(UV ) = dU ,

d(U−1) = dU , (4)

for an arbitrary element V of the group. These mean that
this measure is invariant under left translation, right trans-
lation, and inversion. This measure, the (left–right invari-
ant) Haar measure, is unique up to a normalization con-
stant, which defines the volume of the group:

∫

G

dU = vol(G) . (5)

Using this measure, one constructs a vector space as fol-
lows. Corresponding to each group element U an element

e(U) is introduced, and the elements of the vector space are
linear combinations of these elements:

f :=

∫

dUf(U)e(U) . (6)

The group algebra is this vector space, equipped with the
multiplication

fg :=

∫

dU dV f(U)g(V )e(UV ) , (7)

where (UV ) is the usual product of the group elements.
f(U) and g(U) belong to a field (here the field of complex
numbers). It can be seen that if one takes the central ex-
tension of the group U(1)×· · ·×U(1), the so called Heisen-
berg group, with the algebra (1), the above definition re-
sults in the well-known star product of two functions, pro-
vided f and g are interpreted as the Fourier transforms of
the functions.
So there is a correspondence between functionals de-

fined on the group and the group algebra. The defin-
ition (7) can be rewritten as

(fg)(W ) =

∫

dV f(WV −1)g(V ) ,

=

∫

dUf(U)g(U−1W ) . (8)

Using Schur’s lemmas, one proves the so called grand or-
thogonality theorem, which states that there is an or-
thogonality relation between the matrix functions of the
group:

∫

dUUλ
a
bU
−1
µ
c
d =
vol(G)

dimλ
δλµδ

a
dδ
c
b , (9)

where Uλ is the matrix of the element U of the group in
the irreducible representation λ, and dimλ is the dimension
of the representation λ. Exploiting the unitarity of these
representations, one can write (9) in the more familiar form

∫

dUUλ
a
bU
−1
µ
c
d =
vol(G)

dimλ
δλµδ

a
dδ
c
b . (10)

Using this orthogonality relation, one can obtain an or-
thogonality relation between the characters of the group:

∫

dUχλ(U)χµ(U
−1) = vol(G)δλµ , (11)

or
∫

dUχλ(U)χ
∗
µ(U) = vol(G)δλµ , (12)

where

χλ(U) := Uλ
a
a . (13)

The delta distribution is defined through
∫

dUδ(U)f(U) := f(1) , (14)
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where 1 is the identity element of the group; we notice that
as usual the delta picks up the value of the function at the
origin, U = 1. It is easy to see that this delta distribution is
invariant under similarity transformations, as well as inver-
sion of the argument:

δ(V UV −1) = δ(U) ,

δ(U−1) = δ(U) . (15)

The first relation shows that if the argument of the delta is
a product of group elements, then any cyclic permutation
of these elements leaves the delta unchanged.
The regular representation of the group is defined

through

Urege(V ) := e(UV ) , (16)

from which it is seen that the matrix element of this linear
operator is

Ureg(W,V ) = δ(W
−1UV ) . (17)

This shows that the trace of the regular representation is
proportional to the delta distribution:

χreg(U) =

∫

dV Ureg(V, V ),

= vol(G)δ(U). (18)

So the delta distribution can be expanded in terms of the
matrix functions (in fact in terms of the characters of irre-
ducible representations). The result is

δ(U) =
∑

λ

dimλ
vol(G)

χλ(U) , (19)

or

δ(UV −1) =
∑

λ

dimλ
vol(G)

Uλ
a
bV
−1
λ
b
a ,

=
∑

λ

dimλ
vol(G)

Uλ
a
bV
∗
λ a
b . (20)

This shows that the other functions are also expandable in
terms of the matrix functions:

f(U) =
∑

λ

dimλ
vol(G)

Uλ
a
bfλa

b, (21)

where

fλa
b :=

∫

dV V −1λ
b
af(V ) ,

=

∫

dV V ∗λ a
bf(V ) . (22)

Using this and (8), one arrives at

(fg)λa
b = fλa

cgλc
b . (23)

Next, one can define an inner product on the group al-
gebra. Defining

〈e(U), e(V )〉 := δ(U−1V ) (24)

and demanding that the inner product be linear with re-
spect to its second argument and antilinear with respect to
its first argument, one arrives at

〈f, g〉=

∫

dUf∗(U)g(U) ,

=
∑

λ

dimλ
vol(G)

f∗λ
a
bgλa

b . (25)

Finally, one defines a star operation through

f�(U) := f∗(U−1) . (26)

This is in fact equivalent to the definition of the star oper-
ation in the group algebra by

[e(U)]� := e(U−1) . (27)

It is then easy to see that

(fg)� = g�f� , (28)

〈f, g〉= (f�g)(1) . (29)

Here a note is in order. While the results of this section
were obtained for compact groups, in some cases com-
pactness is not necessary. It is easy to see that, provided
(4) holds, (6)–(8), (14)–(17), (24), the first equality in
(25), and (26)–(29) are still true, even if the group is
noncompact.

2.2 Field theory

Based on the calculational tools presented in the previous
subsection, here we can present the construction of a field
theory on a noncommutative space, the commutation re-
lations of which are those of a compact Lie group. In this
work we consider the simplest case: the scalar theory. To
avoid explicit calculus on such a noncommutative space,
everything is defined on the momentum space. This space
is commutative and one can attribute well-defined (local)
coordinates to it, so that ordinary differential and integral
calculus (on manifolds) can be performed on it. As far as
observables of field theories are concerned, this momentum
representation is sufficient.
To give motivation for the particular form of the action

that is going to be written for a real scalar field, we first
consider the real scalar field on an ordinary RD space. To
be consistent with the notation used throughout this pa-
per, the Fourier transform (only on space) of the field is
denoted by φ, while the field itself is denoted by φ̃. So we
have

φ̃(r) =

∫

dDk

(2π)D
φ(k) exp(ir ·k) . (30)
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An action for a scalar field is

S =

∫

dtdDr

⎧

⎨

⎩

1

2

[

˙̃
φ(r) ˙̃φ(r)+ φ̃(r)Õ(∇)φ̃(r)

]

−
n
∑

j=3

gj

j!
[φ̃(r)]j

⎫

⎬

⎭

, (31)

where the gj are constants and Õ(∇) is a differential oper-
ator. This action is translation invariant, that is, invariant
under the transformations

φ̃(r)→ φ̃′(r) := φ̃(r−a) , (32)

where a is constant.
One can write the action (31) and the transformation

(32) in terms of the Fourier transforms:

S =

∫

dt

⎧

⎨

⎩

1

2

∫

dDk1d
Dk2

(2π)2D

× [φ̇(k1)φ̇(k2)+φ(k1)O(k2)φ(k2)][(2π)
Dδ(k1+k2)]

−
n
∑

j=3

gj

j!

∫

[

j
∏

l=1

dDklφ(kl)

(2π)D

]

[

(2π)Dδ(k1+ · · ·+kj)
]

⎫

⎬

⎭

,

(33)

and

φ(k)→ φ′(k) := exp(−ik ·a)φ(k) . (34)

Considering the space of the k as a group (RD), one no-
tices that (dDk)/(2π)D is the measure of this group that is
invariant under right translation, left translation, and in-
version. It is not normalizable in the sense of (5), as this
group is not compact. One also notices that exp(−ik ·a)
is nothing but the representation a of the group element
corresponding to the coordinates k. As this representation
is one dimensional, exp(−ik ·a) is also the determinant of
this representation.
Now we come to the case on fuzzy space. A real scalar

field φ is defined as a real member of the group algebra:

φ� = φ . (35)

In analogy with the action on ordinary space, one may sug-
gest the action

S =

∫

dt

⎧

⎨

⎩

1

2

∫

dU1dU2

×

[

φ̇(U1)φ̇(U2)+

∫

dUφ(U1)O(U2, U)φ(U)

]

δ(U1U2)

−
n
∑

j=3

gj

j!

∫

[

j
∏

l=1

dUlφ(Ul)

]

δ(U1 · · ·Uj)

⎫

⎬

⎭

, (36)

where the gj are constants and O is a linear operator from
the group algebra to the group algebra. For the action on
the ordinary space, one has

O(k2,k)∝ δ(k2−k) . (37)

In analogy with that, we take

O(U2, U) =O(U)δ
(

U2U
−1
)

. (38)

From now on, it is assumed that this is the case. So

S =

∫

dt

⎧

⎨

⎩

1

2

∫

dU1dU2

×
[

φ̇(U1)φ̇(U2)+φ(U1)O(U2)φ(U2)
]

δ(U1U2)

−
n
∑

j=3

gj

j!

∫

[

j
∏

l=1

dUlφ(Ul)

]

δ(U1 · · ·Uj)

⎫

⎬

⎭

. (39)

A simple choice for O is

O(U) = cχλ(U +U
−1−21)−m2 , (40)

where λ is a representation of the group, and c and m are
constants. An argument for the plausibility of this choice
is the following. Consider a Lie group and a group element
near its identity, so that

Uλ = exp
(

k̃aTaλ

)

,

≈ 1λ+ k̃
aTaλ+

1

2

(

k̃aTaλ

)2

, (41)

where the Ta are the generators of the group. One has

O(U) ≈ cχλ(TaTb)k̃
ak̃b−m2 , (42)

which is a constant plus a bilinear form in k̃, just as was ex-
pected for an ordinary scalar field. In fact, if one introduces
a small constant � so that k̃ is proportional to �, and c is
proportional to �−2, then in the limit �→ 0 the expression
(42) is exactly equal to a constant plus a bilinear form.
An action of the form (39) with the choice (40) also has

a symmetry under

φ(U)→ φ(V UV −1) , (43)

where V is an arbitrary member of the group.
One can write the action (39) in terms of the Fourier

transform of the field in time,

φ(t, U) =:

∫

dω

2π
exp(−iωt)φ̌(ω,U) , (44)

to arrive at

S =
1

2

∫

dω1dU1
2π

dω2dU2
2π

×
[

−ω1ω2φ̌(U1)φ̌(U2)+ φ̌(U1)O(U2)φ̌(U2)
]

× [2πδ(ω1+ω2)δ(U1U2)]

−
n
∑

j=3

gj

j!

∫

[

j
∏

l=1

dωl dUl
2π

φ̌(Ul)

]

× [2πδ(ω1+ · · ·+ωj)δ(U1 · · ·Uj)] . (45)
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The first two terms represent a free action, with the propa-
gator

∆̌(ω,U) :=
ih̄

ω2+O(U)
. (46)

Putting the denominator of this propagator equal to zero
gives the relation between ω and U for free particles (the
mass-shell condition). The third term contains interac-
tions. Any Feynman graph would consist of propagators
and j-line vertices to which one assigns

Vj :=
gj

ih̄j!
2πδ(ω1+ · · ·+ωj)

∑

Π

δ(UΠ(1) · · ·UΠ(j)) ,

(47)

where the summation runs over all j-permutations. In
practice, as we will see later, due to cyclic symmetry of ar-
guments of the δ functions mentioned earlier, permutations
that are different up to a cyclic change just come in the sum
with a proper weight. Also, for any internal line there is an
integration over U and ω, with the measure dωdU/(2π).
As the group is assumed to be compact, the integration
over the group is integration over a compact volume. Hence
there would be no UV-divergences.
It is worth to mention a crucial difference between the

way that δ functions appear in our model and in models de-
fined on ordinary spaces. Here, as mentioned above, each
possible ordering of legs of a vertex comes with a differ-
ent δ, except the cases that two orderings are different up
to a cyclic permutation. This is in contrast to models on
ordinary space, in which all possible orderings have the
common factor of one single δ(

∑

ki), representing the mo-
mentum conservation in that vertex.
Similar to the above observation, δ functions appear

in theories defined on κ-deformed spaces, as pointed
out in the Introduction. In these theories, the ordinary
summation of momenta in each vertex is replaced with
a new summation rule, occasionally called a dotted sum
(+̇) [14, 15]. This new sum, contrary to an ordinary
sum, is non-Abelian, and as a consequence, the δ func-
tions coming with each possible ordering of the legs are
different [14–18].
One can compare this model to a field theory on

a group manifold. In the latter model, the integration in
(36) or (39) would be over the position, not over the mo-
menta, and the operator O would be differentiation with
respect to the coordinates. In a model on a group mani-
fold, the position coordinates are still commuting but the
momenta are not. Here the situation is reversed, and this
is not only a matter of convenience. The operator O de-
termines which model is being investigated: it is algebraic
in terms of the momenta and differentiation in terms of
the position. For models on group manifolds with com-
pact groups, there would be no infrared (IR) divergences
while here there is no UV-divergence. The fact that for
a noncommutative geometry based on the Lie groups the
momenta are still commuting is the reason that here the
momentum picture has been preferred to the position
picture.

2.3 An example: the group SU(2)

For the group SU(2), one has

fabc = ε
a
bc . (48)

A group element U can be characterized by the coordinates
(k1, k2, k3) such that

U = exp(�kaTa) , (49)

where � is a constant. The invariant measure is

dU =
sin2(�k/2)

(�k/2)2
d3k

(2π)3
, (50)

where

k :=
(

δabk
akb
)1/2

. (51)

The reason for this particular choice of normalization is
that for small values of k, (50) reduces to the integration
measure corresponding to the ordinary space. The integra-
tion region for the coordinates is

k ≤
2π

�
. (52)

In the small-k limit, one also has

δ(U1 · · ·Ul)≈ (2π)
3δ3(k1+ · · ·+kl) , (53)

which ensures an approximate momentum conservation.
The exact conservation law, however, is that at each vertex
the product of incoming group elements should be unity.
For the case of a three-leg vertex, one can write this condi-
tion as

exp (�ka1Ta) exp (�k
a
2Ta) exp (�k

a
3Ta) = 1 , (54)

or a similar condition in which k1 is replaced by k2 and vice
versa. One has

exp (�ka1Ta) exp (�k
a
2Ta) =: exp [�γ

a(k1,k2)Ta] , (55)

where the function γ enjoys the properties

γ[k1,γ(k2,k3)] = γ[γ(k1,k2),k3] , (56)

γ(−k1,−k2) =−γ(k2,k1) , (57)

γ(k,−k) = 0 . (58)

Therefore, (54) becomes one of the three equivalent forms

k3 =−γ(k1,k2) ,

k2 =−γ(k3,k1) ,

k1 =−γ(k2,k3) . (59)

The explicit form of γ is obtained from

cos
�γ

2
= cos

�k1

2
cos
�k2

2
−
k1 ·k2
k1k2

sin
�k1

2
sin
�k2

2
,

γa

γ
sin
�γ

2
= εabc

kb1k
c
2

k1k2
sin
�k1

2
sin
�k2

2

+
ka1
k1
sin
�k1

2
cos
�k2

2
+
ka2
k2
sin
�k2

2
cos
�k1

2
.

(60)
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It is easy to see that in the limit �→ 0, γ tends to k1+k2,
as expected.
The choice (40) for O turns out to be

O = 2c

{

sin
[(

s+ 12
)

�k
]

sin �k2
− (2s+1)

}

−m2 , (61)

where s is the spin of the representation. For small values
of k, this is turned to

O ≈−c
s(s+1)(2s+1)

3
(�k)2−m2, (�k)� 1 . (62)

One chooses c so that in the small-k limit O takes the ordi-
nary form of the propagator inverse:

O ≈−k2−m2, (�k)� 1 . (63)

Choosing

c=
3

s(s+1)(2s+1)�2
, (64)

the propagator becomes

∆̌(ω,k)

=
ih̄

ω2+ 6
s(s+1)(2s+1)�2

{

sin[(s+ 12 )�k]
sin �k2

− (2s+1)

}

−m2
.

(65)

It is easy to see that in the limit �→ 0, the usual commuta-
tive propagator is recovered.
Similar things hold for the group SO(3). One only has

to replace the integration region by

k ≤
π

�
. (52′)

A consequence of the compactness of the momentum space
is that field theories based of spaces with Lie group fuzzi-
ness corresponding to compact groups are free from UV-
divergences. The above restriction on the integration re-
gion in momentum space, as well as the UV-finiteness of
the theory, are very similar to those one has in theories de-
fined on lattices. This would be no surprise for this behav-
ior once one mentions that the eigenvalues of the space co-
ordinates are discrete as a consequence of the coordinates
satisfying the SU(2) or SO(3) algebras, and in general that
of a compact Lie group. There are, however, differences be-
tween such theories and theories based on space lattices:
in the latter theories there are no continuous space sym-
metries, while in the former one there are (rotation in the
case of SO(3) or SU(2)); in the former case it is not possible
to determine all position operators simultaneously, while in
the latter case it is; and in the latter case the positions are
discrete, while in the former case the position eigenvalues
are discrete.
The UV-finiteness of the model is reminiscent of the

old expectation that in noncommutative spaces the the-
ory might be free from the divergences caused by the short

distance behavior of physical quantities. In this sense non-
commutative theories based on compact groups resemble
ordinary (commutative theories) with a momentum cutoff.
It would be interesting to mention the fate of the UV/IR
mixing phenomena [29]. As a generic property of models
defined on canonical noncommutative spaces, see (1), cer-
tain combinations of external momenta and the noncom-
mutativity parameter θ may appear as a dynamical cutoff
in momentum space. For example, in two-external leg di-
agrams of φ4 theory, the combination (p◦p)−1/2 with p◦
p := (pµθ2µνp

ν) acts as a cutoff, causing the contribution of
the so called non-planar diagram to be UV-finite [29]. In
the extreme IR limit of external momenta (p→ 0), this cut-
off tends to infinity and the result diverges. In such a case,
in the IR limit of the theory the UV-divergences of the
commutative (ordinary) theory are restored. This is the so
called UV/IR mixing. If the noncommutative theory had
been based on a commutative theory with a momentum
cutoff, there would be no UV-divergence and no UV/IR
mixing.
Theories discussed here are free from UV-divergences,

as the momentum space is compact. In this sense, they
are based on commutative theories with a momentum cut-
off. Hence there is no UV-divergence in the original theory
to be restored in some IR limit, and there is no room for
UV/IR mixing.

3 Amplitudes

In this section the basic elements for the calculation of
a transition amplitude, including the construction of initial
and final states, the proper normalization of the states, and
the relevant kinematical factors are presented.

3.1 Fock space and initial/final states

According to the previous section, the free sector of the La-
grangian in the momentum space is given by

Lfree =
1

2

∫

dU
[

φ̇(U−1, t)φ̇(U, t)+φ(U−1, t)O(U)φ(U, t)
]

,

(66)

from which one obtains the canonical field momenta

Π(U, t) = φ̇(U−1, t) . (67)

The equal-time canonical commutation relations are

[φ(U, t),Π(V, t)] = ih̄δ(UV −1) ,

[φ(U, t), φ(V, t)] = 0 ,

[Π(U, t),Π(V, t)] = 0 . (68)

As usual one might express the dynamical variables in
terms of positive and negative frequency components:

φ(U, t) =

√

h̄

2ω

[

a(U) exp(−iωt)+a†(U−1) exp(iωt)
]

,

(69)
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from which one finds

[a(U), a†(V )] = δ(UV −1) ,

[a(U), a(V )] = 0 ,

[a†(U), a†(V )] = 0 . (70)

One defines the vacuum-state through

a(U)|0〉= 0 , ∀ U,

〈0|0〉= 1 . (71)

The multi-particle states with given momenta, being a ba-
sis of the Fock space of theory, are constructed as

|(U1, n1); (U2, n2); · · ·〉 :=

[

a†(U1)
]n1

√
n1!

[

a†(U2)
]n2

√
n2!

· · · |0〉 .

(72)

Equations (71) and (72) also give the normalization of
multi-particle states. For example,

〈U |V 〉= δ(U−1V ) ,

〈U |U〉= δ(1) . (73)

Of course, the right-hand side of the latter is infinite. But
this is similar to the case of ordinary space. In the case of
ordinary space, the left-hand side is finite if and only if the
volume of the system is finite. In that case the left-hand
side is equal to the volume of the system. One can keep the
volume of the system finite and do calculations up to the
point where this volume is no longer there in the observ-
ables, and then send the volume to infinity. The same thing
is possible here too. In this case, instead of talking about
the finiteness of the volume one takes a finite number of
representations of the group. Again one does the calcula-
tions until this volume in the right-hand side disappears,
and then sends the upper limit on the representations to
infinity. The overall result is that one takes δ(1) as the vol-
ume of the system and deals with it like a finite number
(in the intermediate stages of the calculations). In the final
result, however, there should not be any δ(1).

3.2 S-matrix and transition amplitudes

An element of the S-matrix, which represents the transi-
tion from the initial state i to the final state f , would come
in the general form

Sfi = δfi+Tfi , (74)

where the matrix elements of T come from the interac-
tion terms. In the case of commutative space, Tfi contains
a delta distribution corresponding to energy conservation
and another delta distribution corresponding to momen-
tum conservation. It also contains (corresponding to each
incoming or outgoing particle) a factor

√

h̄/(2ω) (coming
from the expression of the field in terms of creation and

annihilation operators) as well as a normalization factor
√

1/V (where V is the volume of the space). One then has

Tfi =: 2πδ

⎛

⎝

∑

j

ωfj−
∑

l

ωil

⎞

⎠(2π)Dδ

⎛

⎝

∑

j

kfj−
∑

l

kil

⎞

⎠

×
∏

j

√

h̄

2ωfjV

∏

l

√

h̄

2ωilV
M̃fi , (75)

for ordinary space. In the case of noncommutative space,
instead of V, one has δ(1), and instead of the delta distri-
bution corresponding to momentum conservation one has
a delta distribution of a product of group elements cor-
responding to incoming and outgoing particles. Contrary
to the case of ordinary space, however, the order of these
group elements in the delta distribution is important. In
this case one has

Tfi =: 2πδ

⎛

⎝

∑

j

ωfj−
∑

l

ωil

⎞

⎠

×
∏

j

√

h̄

2ωfjδ(1)

∏

l

√

h̄

2ωilδ(1)
Mfi , (76)

where

Mfi =
∑

Π

MΠfiδ(U
Π) . (77)

Here UΠ is a symbolic notation meaning a product of
group elements corresponding to outgoing particles, the
inverse of group elements corresponding to incoming par-
ticles, and possibly group elements corresponding the loops
integrated. The order of these elements is symbolically de-
termined by Π.
Tfi is the amplitude of the transition. The probabil-

ity of the transition is the square of its modulus times the
number of final states:

pi→f = |Tfi|
2
∏

j

[δ(1)dUfj ] . (78)

The factors δ(1) in the number of final states cancel the
factors δ(1) corresponding to outgoing particles in |Tfi|2.
There remain the factors δ(1) corresponding to incom-
ing particles. In |Tfi|2, each term contains a product of
two delta distributions of appropriate group elements,
δ(UΠ)δ(UΠ

′
). If (UΠ = 1) is equivalent to (UΠ

′
= 1), then

one can write δ(UΠ)δ(UΠ
′
) as δ(UΠ)δ(1). This means

that in |Tfi|2 divided by δ(1), only those terms survive that
come from [δ(UΠ)]2. That is,

|Mfi|
2→ δ(1)

∑

Π

∣

∣MΠfi
∣

∣

2
δ(UΠ) . (79)

Note the difference with the case of ordinary space. In that
case one would have |

∑

ΠMfi|
2 instead of

∑

Π |Mfi|
2.

The rest is similar to the case of ordinary space. For
a decay process, δ(1) in the right-hand side of (79) cancels
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the remaining δ(1) coming from the normalization of the
state of the incoming particle. For a two-particle collision,
one has

σ ∝ pi→f
1

vrelδ(1)
, (80)

where vrel is the speed of the colliding particle relative to
the target, and 1/[δ(1)] is the density of the colliding par-
ticles (one particle in a volume V). The factor δ(1) in the
right-hand side of the above expression cancels the remain-
ing δ(1) in |Tfi|2, so that at the end there remains no factor
of δ(1), as expected.
In |Tfi|2, there is also a term [2πδ(ωf −ωi)]2, which can

be written as T [2πδ(ωf −ωi)], where T is the interaction
time, which should be sent to infinity. The transition rate
is the probability divided by T . Therefore, in the rate the
factor T is cancelled, just as in the case of ordinary space.
These results can be summarized as

dΓ =
h̄

2ωi
2πδ(ωf −ωi)

[

∑

Π

∣

∣MΠfi
∣

∣

2
δ(UΠ)

]

×
∏

j

(

h̄

2ωfj
dUfj

)

(81)

for the decay rate Γ , and

dσ =
1

vrel

2
∏

l=1

(

h̄

2ωil

)

2πδ(ωf −ωi)

[

∑

Π

∣

∣MΠfi
∣

∣

2
δ(UΠ)

]

×
∏

j

(

h̄

2ωfj
dUfj

)

(82)

for the cross section σ in a two-particle collision.
Finally, let us address the relative speed vrel. In the case

of ordinary space, one defines the relative speed through

vrel :=

√

δab
∂ω(k)

∂ka
∂ω(k)

∂kb
, (83)

where

k= k1−k2 , (84)

and k1 and k2 are the momenta of the incoming particles.
This speed does not change under exchanging particles 1
and 2, or under a rotation of the incoming momenta. In
fact, as ω depends only on the length of k, one has

vrel =
dω

d|k|
. (85)

In the case of a noncommutative space, one works most
conveniently with group elements instead of momenta. In-
stead of δab, one could use the matrix elements of an in-
variant two-form of the algebra. One could choose the co-
ordinates so that these elements become δab. Instead of
(k1−k2), one could use (U1U

−1
2 ), or (U

−1
2 U1), or their in-

verses. Instead of differentiation with respect to ka, one
could use the action of XLa or X

R
a , as the left and right

invariant vector fields, respectively, whose actions at the
origin (the unit element of the group) is equal to differen-
tiation with respect to ka. So, one would have

vrel :=
√

δab{[LXa(ω)](U)}{[LXb(ω)](U)} , (86)

where LX(ω) means the action (Lie derivative) of the vec-
tor field X on the function ω. As there are four choices
for U and two choices for X, it seems that one should
choose between eight possible definitions for the relative
speed. The function ω, however, is a class function, that is

ω(V UV −1) = ω(U) , (87)

as ω2 is in fact “−O(U)”. By this, together with the fact
that theXa are left or right invariant, and that δ

ab is an in-
variant two-form, one can show that all these choices lead
to the same value for vrel. Even more, one can in fact sub-
stitute Xa(ω) with the partial derivative of ω with respect
to ka. Then, as ω is a function of |k|=

√

δabkakb, it is seen
that (85) holds for the case of noncommutative spaces as
well. In fact,

vrel =
d
√

−O(U)

d|k|
. (88)

3.3 Examples

In this subsection explicit expressions for the perturbative
expansion of field theory amplitudes in a space with SU(2)
fuzziness are discussed.
For the propagator, let us choose the representation

s= 12 in (65):

∆̌(ω,k) =
ih̄

ω2− 16
�2
sin2 �k4 −m

2
. (89)

The reason for this choice is that it is the only representa-
tion for which, on the mass shell, energy is an increasing
function of momentum. By this choice, one has for the rela-
tive velocity

vrel =
2
� sin

�k
2

√

16
�2
sin2 �k4 +m

2
. (90)

We consider two types of interactions, the φ3 and φ4 inter-
actions, which correspond to nonzero g3 and g4 in (39).

3.3.1 The three-particle interaction

The fundamental vertex with three incoming legs 1, 2,
and 3 is

V
[123]
3 =

g3

2ih̄
2πδ(ω1+ω2+ω3) [δ(U1U2U3)+ δ(U1U3U2)] .

(91)
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Now consider the scattering process 1+2→ 3+4. At the
tree level, this process occurs via three diagrams (the s-,
t-, and u-channels). Each of these channels correspond to
four types of group element delta functions. Of the twelve
group element delta functions, however, there are only
six different delta functions, each appearing in two of the
three channels. The overall result corresponding to (77) is
then

Mfi =
( g3

2ih̄

)2
{

[∆̌(ωs,ks)+ ∆̌(ωt,kt)]δ
(

U1U2U
−1
4 U

−1
3

)

+[∆̌(ωs,ks)+ ∆̌(ωt,kt)]δ
(

U1U
−1
3 U

−1
4 U2

)

+[∆̌(ωs,ks)+ ∆̌(ωu,ku)]δ
(

U1U2U
−1
3 U

−1
4

)

+[∆̌(ωs,ks)+ ∆̌(ωu,ku)]δ
(

U1U
−1
4 U

−1
3 U2

)

+[∆̌(ωt,kt)+ ∆̌(ωu,ku)]δ
(

U1U
−1
3 U2U

−1
4

)

+ [∆̌(ωt,kt)+ ∆̌(ωu,ku)]δ
(

U1U
−1
4 U2U

−1
3

)}

,

(92)

where

ωs := ω1+ω2 ,

ωt := ω1−ω3 ,

ωu := ω1−ω4 , (93)

and

Us := U1U2 ,

Ut := U1U
−1
3 ,

Uu := U1U
−1
4 . (94)

It is to be noted that sending � to zero, while it makes
the propagators equal to the commutative ones, does not
make the transition rate equal to the commutative one.
The origin of this difference, as pointed out in the previous
section, comes back to the way of the appearance of the δ.
Here, as pointed out earlier, each possible ordering of legs
of a vertex or diagram comes with a different δ, except the
cases that two orderings are the same up to a cyclic per-
mutation. This is in contrast to models on ordinary space,
in which all possible orderings have the common factor of
one single δ

(∑

ki
)

, representing the momentum conser-
vation in that vertex. So, in the present case, the set of
available final states is larger than the corresponding set
in the commutative case. As it is seen from the delta func-
tions, for given k1, k2, and k3, there is not only one, but
there are six possible values of k4. In the commutative case,
all these six values are the same, so that one should add
the amplitudes and then square the result. In the present
case, these are not the same, so that one should add the
squares, as one is calculating the transition probability to
different final states. The overall result in the present case,
apart from a multiplicative constant, is that the ratio of
terms containing a propagator squared to the terms con-
taining the product of two different propagator is one.
The corresponding ratio in the commutative case is one
half. As mentioned in the previous section, a similar ob-
servation has been made in theories defined on κ-deformed
spaces [14–18].

3.3.2 The four-particle interaction

The fundamental vertex with four incoming legs 1, 2, 3,
and 4 is

V
[1234]
4 =

g4

6ih̄
2πδ(ω1+ω2+ω3+ω4)

× [δ(U1U2U3U4)+ δ(U1U2U4U3)+ δ(U1U3U2U4)

+ δ(U1U3U4U2)+ δ(U1U4U2U3)+ δ(U1U4U3U2)] .
(95)

For the scattering process 1+2→ 3+4, at the tree level
there is a single diagram. The overall result corresponding
to (77) is then

Mfi =
g4

6ih̄

[

δ
(

U1U2U
−1
3 U

−1
4

)

+ δ
(

U1U2U
−1
4 U

−1
3

)

+ δ
(

U1U
−1
3 U2U

−1
4

)

+ δ
(

U1U
−1
3 U

−1
4 U2

)

+ δ
(

U1U
−1
4 U2U

−1
3

)

+ δ
(

U1U
−1
4 U

−1
3 U2

)]

.

(96)

In the above one may observe how the different orderings of
legs in a vertex come with different δ, again just the same
phenomena as in κ-deformed theories [14–18].

4 Conclusion

The structure of field theory transition amplitudes in
a three-dimensional space whose spatial coordinates are
noncommutative and satisfy the SU(2) Lie algebra were ex-
amined. In particular, the basic notions for constructing
the observables of the theory were introduced. These in-
clude multi-particle states of the theory as a basis of Fock
space, an instruction for the proper normalization of the
kinematical factors associated with initial and final states
of observables, as well as the way one can introduce the
relative velocity between the initial states, appearing in
the incident flux of an observable. Subtleties related to the
proper treatment of the δ distributions in a S-matrix ex-
pansion of the theory were discussed. Explicit examples
were given for the amplitudes of an interacting scalar field
theory in the lowest order of perturbation theory.
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